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The net method is used to obtain the numerical solution of the problem 

of the kinetics of the temperature field in a three-layered colloidal 
body in the presence of phase transformations. The obtained results are 
compared with experimental data. 

In s o m e  p r a c t i c a l l y  i m p o r t a n t  p r o b l e m s  of hea t  and 
m a s s  t r a n s f e r  (pure ly  t echno log ica l  p r o b l e m s  of hy-  
d r o t h e r m a l  p r o c e s s i n g  of m a t e r i a l s ,  h e a t - e n g i n e e r i n g  
ca lcu la t ions  of v a r i o u s  kinds for  b a r r i e r  s t r u c t u r e s ,  
au toma t i c  r egu la t i on  of d ry ing  f rom the t e m p e r a t u r e  of 
the m a t e r i a l ,  e tc . )  only the k ine t i c s  of the t e m p e r a -  
tu re  f ie ld  needs  to be inves t iga t ed .  The ef fec t  of m a s s  
t r a n s f e r  on the hea t  t r a n s f e r  in this  c a s e  is  c o r r e c t e d  
by the in t roduc t ion  into the d i f f e r en t i a l  hea t  eonduc-  
l ion equat ions  and boundary  condi t ions  of hea t  s o u r c e s  
due to the  o c c u r r i n g  m a s s  t r a n s f e r  p r o c e s s e s  and by 
the in t roduc t ion  of equiva len t  t h e r m o p h y s i e a l  eoe f f i -  
c i en t s .  

With  suf f ic ient  a c c u r a c y  for  p r a c t i c a l  p u r p o s e s  we 
can confine o u r s e l v e s  to a p p r o x i m a t e  so lu t ions  ob- 
ta ined  by n u m e r i c a l  i n t eg ra t ion  me thods .  

We c o n s i d e r  a s y s t e m  c o m p o s e d  of t h r e e  unbounded 
contac t ing  p l a t e s .  We in t roduce  the s y m b o l s  

Rn=R~-l+r~ ( n = l ,  2, 3; Po=0). 

The t h e r m o p h y s i c a l  coe f f i c ien t s  (TPC) of the p la tes  
in the g e n e r a l  c a s e  depend on the t e m p e r a t u r e .  The  
s y s t e m  of hea t  conduct ion equat ions  is  l i n e a r i z e d  by 
the in t roduc t ion  of a v e r a g e d  equiva len t  T P C s  b a s e d  on 
an a n a l y s i s  of the  t e m p e r a t u r e  dependence  of the  T P C s  
and an a n a l y s i s  of the  k ine t i c s  of i n t e r n a l  hea t  and 
m a s s  t r a n s f e r  in the h y d r o t h e r m M  p r o c e s s i n g  of m a -  
t e r i a l .  The  T P C s ,  l ike  L n, for  ins tance ,  a r e  a v e r a g e d  
by using the r e l a t i o n s h i p  

t2 

1 f ~(t)dt. (1) t-----7 
t l  

The m a t h e m a t i c a l  fo rmula t ion  of the  p r o b l e m  is as  
follows: 

aT,, (x, -~) _ L,, a~T~ (x, -~) 
c~ v .  - aT Ox ~ + f" (x, ~), 

( r . _ ~ x ~ r .  ( n =  1, 2, 3); 0 ~ < ' ~ ' ~ , ~ )  (2) 

with initial conditions 

T~ (x, 0) = T o = const. (3) 

At  the contac t ing  s u r f a c e s  of the  p l a t e s  the  boundary  
condi t ions  a r e  of the  4th kind 

~ aT~ (R~-- O, ~) _ ~,+~ aT~+I (R~+~ + O, ~) = %.~+L (~) 
Ox Ox 

(n = ], 2), (4) 

which express the occurrence of phase transformations 
and 

T~(/?n--0, ~) =W~+~(.%+0,  "0 ( n =  1, 2). (5) 

On the outer  bounda r i e s  of the  p la tes  the  boundary  con-  
d i t ions  a r e  of the 1st kind: 

r~(o, *)=r  T~(R3, , ) = % ( , ) .  (6) 

An exact solution of (2) with more general boundary 

conditions, including boundary conditions of the 2nd 
and 3rd kind, is given in [i, 2]. 

Problem (2)-(6) is solved by the numerical method 

for the specific case of baking of wheat bread in a 

KhVK-2 oven (Odessa Bakery). The bread is regarded 
as a system of three unbounded plates in thermal con- 

tact [i, 3]. Subscripts n = I, 3 indicate the upper and 

lower crusts, and n = 2 indicates the crumb. The 

thicknesses of the crusts and crumb are assumed to 

be constant. In fact, the thickness of the crusts during 
baking varies slightly owing to thermal diffusion of 

moisture and the gradual shift of the zone of evapora- 

tion to the center of the erumb. If we assume that the 

crusts are thin (in our case r i = 0.002 m, r3 = 0.003 m) 

in comparison with the crumb (r 2 = 0.070 m) this as- 
sumption is quite valid for practical purposes. More- 

over, the TPCs of the crusts were calculated as for 

a composite body (crust, dough) with due regard to the 

laws of crust formation [4]. 

The baking process, according to established the- 

ory, is divided into two periods: the periods of in- 

creasing and the constant rate of moisture removal 

[4]. 
Functions fn(x, @ in (2) take into account all the heat 

sources (the heat spent on the slight evaporation of 

moisture from the open surface and the effect of ther- 

mal diffusion of moisture on heat transfer in the first 

period, and the heating of molarly transferred vapor 

in the upper crust in the second period). Their analyt- 

ical representation is based on a thorough analysis of 

the kinetics of moisture removal during baking, which 

is impossible in factory experiments. 

In calculations of the temperature field of the 

dough--bread during baking the effect of mass trans- 

fer on the heat transfer was taken into account by the 

introduction of equivalent TCPs (the criterion K h, 

based on Ginzburg's investigations [4], for dough in 

the first period was taken as 0.14). 

In the second period there is hardly any mass trans- 
fer in the crumb since the moisture content of the 

crumb is practically constant. In view of the above the 

values offn(x, T) in the numerical integration of (2) are 
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a s sumed  to be zero.  In (4) ~23(~) = 0 for the whole pe-  
r iod  of baking s ince  a lmos t  all  the m o i s t u r e  evapo- 
ra ted  in the region  of the lower c rus t  moves  into the 
crumb,  where  it  condenses  (the heats  of evapora t ion  
and condensa t ion  a re  a lmos t  the same) .  

The evapora t ion  of m o i s t u r e  on the upper  c r u s t /  
crumb boundary is significant only in the second pe- 

riod and was taken into account for this period only in 

(4) by means of a constant negative heat source ~12 = 
= const = C- 

For numerical integration of the simplified system 
(2)-(6) we used the rectangular net method. In the 
choice of the net equation the most important points are 
the stability in regard to roundin~g-off errors, the 
order of the approximation error, and its simplicity. 
In view of this we used a six-point symmetrical non- 
explicit net equation with an order of approximation 
O(h 2 + 12) [5, 6], which for an unbounded plate is written 
as follows: 

2 (l~_~. k+~ + ti+:. k+~) + (co + Y) t .  k+, = 

=~-a  (t~_L~+t~+~.~)+(o~- a)t~. ~ (~ ~).,% (7) 

This  net  equation is absolu te ly  s table  [7], which r e move s  
the l imi t a t ions  imposed on the r e l a t i o n s h i p b e t w e e n  h and 
l. For  its so lut ion we used the method of r e c u r s i o n  [8], 
which is  eas i ly  c a r r i e d  out by e l ec t ron ic  compute r s .  

The points of d iv is ion of the media  (x = R~, x = R 2) 
a re  c h a r a c t e r i z e d  by the fact that  the t e m p e r a t u r e  in 
the i r  v ic in i ty  v a r i e s  most .  Hence, at the boundar ies  
of contact  of the media  we have to use  a net  equation 
with a higher  o rder  of approx imat ion  but which s t i l l  
allows the use  of the method of r e c u r s i o n .  This  can be 
done by the in t roduct ion  of v i r t ua l  nodes (R~ - h~, k/), 
(R~+ h~,k/) a n d ( R  2 - h3,1d), (Rz +b~,k/)  ( k=  0 , 1 , 2  . . . .  ) 

, 
at which the va lues  of t(x, ~) a re  denoted by tit-~, k, 
t l .+ i ,k  and t 1 _ l ,  k, t~2+i,k, r e spec t i ve ly  [6]. 

~AssumingZthat the solut ion of p rob lem (2)-(6) for 
one med ium can be ext rapola ted  smoothly into the 
ne ighbor ing  med ium (broken l ines  in Fig.  1) and wr i t -  
ing the boundary  condit ion (4) with an e r r o r  not exceed-  
ing 0(h4), and writing at the nodes (R i - 0, (k + i)/) and 

(R 1 + 0, (k + I)/) the more accurate equation with error 

0(h 4) [6], we obtain formula (8) for calculation of the 

values oft(x,T) at the pointx=R~, i.e., iori= ix: 

d~ (~ - -  6a~) t~_~ ~+~ + d~ (~--  6~) 
hi ' h2 tia+l'k+l -J- 

+ [ dl(6~t +5~ ' h ,  ~- d~(6a~ +5(%) ] t ~ + ' = h ~  ' 

= dl (33 1 + ca)l) ti~_l,k -~ 
h~ 

3d~a~ �9 

_}_ 3d~a,h~ /;i+l,k -- I dl (6axhl-- 5w~) .~ 

_{_ dz(6a~--50)z) ] t i~ .~+6C, (8) 
h~_ J 

where  

dl = kJa l ,  d,z = %Ja2. 

The v i r tua l  va lues  of t*l_l, k and t* i1+1, k in (8) a re  
ca lcu la ted  f rom the above net  equations of h igher  ac-  
curacy .  

% z ,/_,./ 

x 

Fig. I. Diagram of problem (VN are the virtual nodes). 

For T = 0 (k = 0) the virtual values are determined 

from (3) : 

t~*~-l,0 = to and t~,+l,0 = t0. 

The r e  a re  s i m i l a r  f o rmu la s  for the boundary  of con-  
tact  x = P~, the only d i f fe rence  being that we mus t  put 
C = 0 in the co r r e spond ing  fo rmulas  s ince  in (4) $23(7} = 
: 0. 

To ca lcu la te  the va lues  of ti, k+l (k = 1, 2 . . . . .  n - 1) 
at points which do not belong to the boundar ies  of con-  
tact  of the pla tes  we use  net  equat ions of type (7) with 
e r r o r  O(hl). 

Thus,  if on the k- th  layer  with r e spe c t  to T we know 
t h e v a l u e s  o f t i ,  k ( i ~ l ,  2 , . . . ,  n . -  1) and, a lso t h e v i r -  
tual  va lues  t~1-1, k, til+l, k and ti2-1 , k, ti2+l , k, then the 
( k+  1)th l ayer  for points  x ~R  1, x ;~R 2 can be ca l -  
culated f rom fo rmulas  of type (7) mad for points  x = R 1 
and x = t~  f rom fo rmula  (8) and s i m i l a r l y  for  the s e c -  
ond boundary  of contact .  To ca lcu la te  the (k + 1)th 
l ayer  we obtain a sy s t em of l i nea r  equat ions with a J ae -  
obian matr ix ,  for the solut ion of which we use  the 
method of r e c u r s i o n  [6, 8]. 

The ca lcu la t ions  were  done on a Mi nsk - 1  e lec t ron ic  
digi tal  compute r  for h~ = h3 = 0.0001 m, b~ = 0.001 m; 

li  =12 =13 = 3 rain.  
The values  used for the averaged  equiva lent  T P C s  

for the f i r s t  per iod  of baking (T = 18 rain) on the bas i s  
of our own and publ ished data were: ~1 = 450kg/m~, 
X'I = 0.22 W / m .  deg, a l  = 2.52 �9 10 -7 m2/sec, Yz = 
= 550 kg/m 3, ~ = 0.58 W / m .  deg, ~ = 3 .92 .  10 -7 m2/see, 
73= 500 kg/m 3, ~3 = 0 . 2 5 W / m ' d e g ,  ~ = 2 . 7 0 "  
�9 10 -7 m2/sec.  F o r  the second per iod  Yl = T3 = 400 kg/m 3, 

--T .-"7 --! 
Y2 =450  kg/m 3, ~ 1 = k l ,  ~ =;~3, -k~ = 0 . 5 0 W / m . d e g ,  --I 
a 1 = 2.66 �9 t0 -7 m2/sec, --a~ = 4.48" 10 -7 m2/sec.  The 
specif ic  heats  ca lcu la ted  f rom these  data for the crus t ,  
dough, and c r u m b  agree  with the mos t  accu ra t e  pub- 
l i shed data [4]. 

The calculated and experimental data for the kinet- 

ics of the temperature field of bread during baking are 

given in Fig. 2. 

The temperatures in the dough/bread were measured 

by copper-constantan differential thermocouples and 
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recorded on graph tape in front of a calibrated elec- 
tronic potentiometer. The thermoeoupie leads were 
wound helically between the fingers of cradles, which 
prevented their breakage. 

303 

363 ~ " 

j ~ 3 t ~  

3O3 
5 /4 

o - - !  �9 - - 5  
�9 - - 2  o - - 6  
A - -3  v - - 7  

fJ 
26 31 37 5! 63 73;: 

Fig. 2. Temperature fields of body during baking, 

obtained on Minsk-i computer (continuous lines), 
and experimental data recorded on an electronic 

potentiometer (experimental points). Points 1-8 

correspond to times T = 6, 12, 18, 24, 30, 36, 42, 

and 45 min from the start of baking. The height x 

of the  b r e a d  i s  in ram, T is  in ~ K. 

A c o m p a r i s o n  of the e x p e r i m e n t a l  and t h e o r e t i c a l  
c u r v e s  of the  k ine t i c s  of the  t e m p e r a t u r e  f ie ld  shows 
t h e i r  good a g r e e m e n t .  The  somewha t  h ighe r  va lue  of 
the c a l c u l a t e d  t e m p e r a t u r e  in the  r e g i o n  of the  upper  
c r u s t  m u s t  be  a t t r i bu t ed  to the  fac t  that  in the so lu t ion ,  

9~(x, T) and ~I~(T) w e r e  put equal  to z e r o  and,  o b v i o u s -  
l y ,  to o the r  r e s t r i c t i o n s  of the  p r o b l e m .  In l a b o r a -  
t o ry  e x p e r i m e n t s  f l ( x ,  T) and ~I~(T) can b e  c a l c u l a t e d  
on the b a s i s  of the k ine t i c s  of m o i s t u r e  r e m o v a l .  

NOTATION 

r n (n = I. ~, 3) is the thickness of the~plates, Rn are 
the total th~ ~nesses of neighboring plates; T(x, 7) is 

the temperature; Cn, ~n, ~n, and a n ar~ the equiva- 
lent averaged specific heat, density, thermal conduc- 
tivity, and thermal diffusivity of the plates; 7 k is the 
duration of the hydrothermal treatment of the material; 
h and l are steps along space and time coordinates 

axes; t(x,9 is the solution of the net equation; w = 
= hZ// is a constant. 
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